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INSIDE OP A TWO-DIMENSIONAL HYPERBOLIC NOZZLE 

By Howard W. Emmons 

SUMMARY 

The two-dimensional flow of a frictionless, adiabatic, 
perfect gas inside of a two-dimensional hyperbolic nozzle 
has "been studied "by numerical methods described in NACA 
Technical Note No. 932.  A series of solutions are presented 
which show an almost continuous transformation of known sub- 
sonic solutions to the known subsonic-supersonic solution. 
The words "almost continuous" are used because difficulties 
at the point where the shock wares touch the wall seem to 
prohibit continuous transformation from one type of solution 
to the next. 

Solutions with partial shocks, that is, shock waves 
that do not extend all the way across the nozzle, are very 
hard to obtain.  Residuals of one part in one thousand can 
sometimes be eliminated only by introducing a shock.  The 
type of solution obtained is, thus, very sensitive to small 
changes in nozzle form. 

The solutions are not single-valued, in general, in the 
relation of flow through the nozzle to pressure at a given 
point in the nozzle.  In experiments, the flow might make 
small jumps as the type of flow pattern passes through un- 
stable regions. 

A few schlieren photographs show that the actual flow 
through this nozzle differs considerably from the computed 
solutions.  All the differences can be ascribed to the ef- 
fects of friction.  Since the flow pattern in the nozzle is 
very critical in the slightly supersonic regions, the phenom- 
ena would be greatly altered if a boundary layer were included 
in the computation. 
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It has been known for some years that the perfect fluid 
theory,  p = f(P),  was not adequate tn describe any of the 
phenomena during transition from wholly subsonic to subsonic- 
supersonic flow in a nozzle.  ]Por a one—dimensional theory* 
shock waves together with an otherwise perfect fluid are 
enough.  Iron this report it can be concluded that for the 
corresponding two-dimensional problem a perfect fluid theory 
supplemented with shock waves is still not enough.  For ade- 
quate check with experiment, a theory must be based UBOC a 
fluid with friction (at least in regions near the vails; in 
other regions friction would have no effect).  Solutions with 
this imperfect fluid involve a -orohibitive amount of labor 
with present computing techniques. 

IffTRO DUCT 10 H 

The flow of compressible fluids through nozzles has 
been the subject of investigation, both experimental and 
theoretical, for more than a century.  Fearly all the theo- 
retical work has been confined to considerations of the flow 
of perfect gases, generally neglecting friction and heat 
transfer, although some work covering these latter effects 
has been attempted.  Many of the early results are summed up 
in reference 1.  Like all complicated physical nroblems, the 
first theoretical attacks are made with an oversiE-plifled 
physical picture.  In the case of flow through nozzles this 
simplification of fluid properties is used together with a 
simplified geometry.  This assumes a one—dimensional treat- 
ment of the flow in the sense that velocity and fluid prop- 
erties are assumed to be unioue functions of a single vari- 
able which represents distance along the nozzle axis, the 
variation in nozzle cross section being taken normal to this 
axis or in some other but equally arbitrary manner.  The 
one-dimensional theory shows that a simule converging- 
diverging nozzle acts for low velocities like a conventional 
venturi meterj that is, the velocity increases and the pres- 
sure decreases to the minimum section, following which the 
reverse occurs.  As the exit pressure of the nozzle is low- 
ered, the velocity at the minimum section continues to in- 
crease until a velocity eaual to the local speed of sound 
appears. 

In figure 1 the pressure variation along an arbitrary 
nozzle is plotted, showing the region for which the flow is 
similar to a conventional venturi meter.  With further clron 
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in nozzle exit pressure the velocity at the diverging portion 
of the nozzle immediately following the throat increases 
above that of the speed of sound and continues thus to in- 
crease until interrupted "by a shock wave.  The standing shock 
wave adjusts its position in such a way that the fluid after 
the shock wave can continue through the nozzle to come out at 
the specified exit pressure.  If the exit of the nozzle is 
considered infinitely far away, the shock wave can be moved 
as far from the minimum section as desired.  If the nozzle 
is short, the shock wave eventually arrives at its end, then 
passes out of the nozzle in a complex manner.  The phenomena 
occurring outside of the nozzle will not be considered in 
this report.  Consider what happens inside of the nozzle when 
a better geometric approximation to its form is assumed. 

The simplest improvement in assumption about the geom- 
etry of a nozzle is to consider a two-dimensional passage, 
that is, a passage like that drawn in figure 1, except that 
it will not be assumed that velocity and fluid properties 
are constant across some arbitrarily drawn cross section. 
In a recent work (reference 2) a refinement of the one- 
dimensional treatment which is good in the neighborhood of 
the nozzle axis was studied.  No attempt was made to inves- 
tigate solutions when shock waves were present, and no dis- 
cussion is given of the transition from subsonic to subsonic- 
supersonic type of flow,  Some work in this direction has 
been attempted.  (See references 3, 4, and 5.)  In each case 
the differential equations describing the two-dimensional 
motion of a frictionless, adiabatic, irrotational perfect 
gas are written for the region where the Mach number equals 
1 and solutions are sought in the form of power series. 
Very considerable labor is required to evaluate the coeffi- 
cients of the power series and, consequently, the power se- 
ries were terminated at approximately the eighth power term, 
6-, I. Taylor (reference 3) has studied in this way the sym- 
metrical flow through a symmetrical passage.  Thus, his so- 
lutions either are completely subsonic, that is, like the 
conventional venturi meter, or contain symmetrical super- 
sonic regions located in the minimum section at the wall. 
As a result of this work it was shown that this type of so- 
lution was limited in a way which depended upon the curvature 
of the wall.  T, Meyer (reference 4) has studied the nonsym- 
metrical flow through a nozzle which passed through the speed 
of sound from subsonic to supersonic.  The solutions of Taylor 
and Meyer are sketched in figure 2a and 2e, respectively. 
Neither of these workers gave any indication of how the flow 
could change from the one form to the other.  The generaliza- 
tion of the results of the one-dimensional theory is not 
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immediate since a shook ware at subsonic velocity is impos- 
sible and the solutions of Taylor do not include supersonic 
regions that extend completely across the massage.  It is, 
therefore, impossible to assume with the one-dimensional 
theory that a minute shock appears at  M = 1  (at minimum 
section) and then grovs as the exit pressure is dropped.  An 
attempt to fill the gap "by the same po^er series method has 
"been made by H. Gortler (reference 5/» Vß0 used power series 
which permitted nonsymmetrical solutions and showed that so- 
lutions could be obtained which satisfied the differential 
enuation up to the eighth degree terms used.  G-ortler does 
not show, however, that solutions of this form have any di- 
rect bearing upon what actually happens since he does not 
show that his series, even if continued to infinity, could 
actually represent solutions to the differential eouation. 
It is now to be expected on the basis of results of other in- 
vestigations, such as those of Eingleb (reference 6), that 
beyond the limit solution of Taylor there only exist solu- 
tions v-ith cusps and overlapping streamlines which, of course, 
are of no physical significance.  The results of Gortler's 
work, however, are suggestive in that the form of the constant 
velocity lines obtained by him indicates that the eighth de- 
gree equations are attempting to give a compression shock, 
but, of course, are unable to do so.  It is easily conjec- 
tured, therefore, that the transition from the symmetrical 
type of flow of Taylor to the nonsymmetrical flow of Meyer 
takes place somewhat as indicated in figures 2b, 2c, and 2d. 
A small conroression shock would be imagined as starting at 
the wall in Taylor's solution at the down stream point where 
the constant velocity  M = 1  line arrives at the wall.  It 
then grows in magnitude and extends toward the center of the 
passage.  Eventually the shocks from onnosite walls arrive 
at the center of the passage, combine and move as a single 
shock on downstream similar to the one-diirensional theory. 
This picture, as it turns out, is approximately correct, al- 
though certain modifications have still to be considered in 
future work. 

This investigation, conducted at Harvard University, 
was sponsored by and conducted with the financial assistance 
of the National Advisory Committee for Aeronautics. 

The author wishes to acknowledge indebtedness to Dr. 
Andrew Yazsonyi who carried out all the detailed computations 
and supplied many ideas during the hours of discussion of 
various fine points of the comimtat ions and the fluid mechan- 
ics . 
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SYMBOLS 

a acoustic velocity 

D half nozzle throat dimension 

M Mach number 

p pressure 

Pr Prandtl number 

q velocity (components  u, v) 

Q residual 

R,r radius of curvature of streamline 

w complex-velocity potential 

x,y coordinates in physical plane 

z complex coordinate in physical plane 

a angle between ty     and T\     lines 

Y isentropic exponent 

8 lattice spacing in computation 

e       fraction of lattice spacing from net point to sh^ck 
wave 

cp       deflection angle of streamline produced by an oblique 
shock 

\|/ stream function 

T[ stream function for incompressible fluid 

t velocity potential for incompressible fluid 

8W oblique shock angle 

p mass density 
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U) rate of rotation 

m1   =       dimensionless rotation ao 

Subscripts 

a condition after a shock wave 

D condition "before a shock wave 

er critical condition 

i incompressible 

I, TJ denote differentiation in the corresponding 
direction 

0,1,2,3,4,6  lattice points 

0 stagnation condition 

RESULTS OE RELAXATION SOLUTION OS" THE FLOW 

THROUGH A HYPERBOLIC NOZZLE 

Reference 7 shows how to apply the relaxation method to 
the solution of compressible fluid flow problems in two di- 
mensions.  A simple channel was chosen for first investiga- 
tion, so that attention could be concentrated on the diffi- 
culties of the compressible fluids part of the problem with- 
out being bothered by difficult geometry.  As a consequence, 
the channel formed by two hyperbolas was chosen.  The complex 
potential function for this nozzle is 

w a sinh"1 z (l) 

where 

z =* x + i y 

w =* £ + i n 

i        velocity  potential 

i\        stream   function 
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The physical shape of this nozzle in the x,y plane is easily 
computed from 

x = sinh t   cos T\ 
(2) 

y =» cosh i   sin T> 

while the velocity  qi  of an incompressible fluid flowing 
through this passage is given "by 

1    cosh 2i   + cos 2n , . 
(3) 

*t* 

Figure 3 shows the  I  and T\     lines in this nozzle.  These 
lines  are the coordinate system used in the compressible 
flow solutions,  Figure 4 shows the flow of an incompressi- 
ble fluid through this passage.  This solution is to be com- 
pared with later solutions for the flow of compressible 
fluid at high velocity.  All the remaining figures (5 
through 30) show various facts about the flow of a gas 
through this nozzle while table I summarizes various numer- 
ical details.  It should be observed that the flow is essen- 
tially that of a conventional venturi meter for al} cases in 
which the Mach number at the center of the minimum section 
is  M< 0,812,  This is the limiting case essentially as 
would have been described by the solutions of Taylor,  By 
graphical interpolation (fig. 9) it was found that  M = 1 
first appears at the wall for a center Mach number of 0,772. 
The appearance of  M * 1  at the nozzle wall is in no way 
critical for the flow through the nozzle.  It is of interest 
only because it formerly was, and occasionally still is, er- 
roneously associated with some critical aspect of the flow. 
Shock waves do not, and indeed could not, occur when only 
one point has reached the local sonic velocity. 

The essentially subsonic flows of figures 4 through 8 
are equivalent to the results recently published by Southwell, 
Greene, and JPox (references 8 and 9) except for a different 
nozzle shape,  The work of these two papers and the present 
report were carried out entirely independently and the extent 
to which the results agree is gratifying, 

Before the solutions with shocks are discussed, it 
should be observed that the computer has a choice of the 
type of shock wave he wishes to consider.  Should shock 
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TABLE I 

THE MACH NUMBER AT VARIOUS POINTS IN THE NOZZLE 

Fig- 
ure 

M 

Center of 
nozzle 
throat 
CI=TI-O) 

u 
Center line 

^ « 0.93 

(I = 0.6, 
T) s 0.0) 

at 

M 

Wall at 
x = 0 

(1 = 0.0, 
1> 0.6) 

M 

Maximum 
in 

nozzle 
Remarks 

"7F 

Subsonic 

_v 

4 

5 

6 

7 

8 

10 

11 

12 

13 

14 

15 

16' 

.600 

.692 

.772 

.793 

.812 

.832 

.875 

to 

.46 

.505 

.540 

.555 

.556 

.563 

.575 

.602 

.625 

.642 

1.455 

Q 

.742 

.875 

1.000 

1,035 

1.085 
 .A.  

By interpolation 

Symmetrical 

Subsonic-supersonic 

1.133 

1.140 

to 

i-i 

1.143 

1.187 

1.398 

1.443 

1.525 

1.63 

 .__  

Partial shocks 

—K  

Complete shocks 

{Complete subsonic- 
supersonic solution 
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wares "be normal or oblique?  At the wall the Immediate thought 
is to use only normal shocks since, then, the direction of 
the stream is unaltered on orossing the shock and hence the 
stream continues along the wall.  As will oe discussed later, 
a streamline curvature jump occurs across the shock which re- 
quires a curvature singularity in the subsonic flow follow- 
ing the shock.  This singularity arises naturally during the 
course of the relaxation solution.  If an oblique shock had 
"been used, solutions could have been obtained which would 
have included a singularity, in some cases a stagnation point, 
downstream from the shock wave.  In this report it was de- 
cided to use only normal shocks at the wall.  In an actual 
nozzle, the boundary layer would alter the shock boundary 
condition considerably. 

Figures 10 through 12 show solutions with partial shocks, 
that is, shocks that do not extend all the way across the 
nozzle.  Figure 13 is included in this category in spite of 
the fact that the shock is drawn to extend completely across 
the nozzle.  This case is a solution for which the shock 
waves from oppsite walls have just combined.  The shock 
waves are here tangent to the  M = 1  line at the center 
line of the channel.  Thus, the shock waves become Infini- 
tesimal In magnitude.  In the numerical work from which this 
solution was drawn, much higher accuracy would have been 
needed to distinguish between the solution as drawn and the 
solutions obtained, by merely erasing a small section of the 
shock and  M = 1  line at the center of the nozzle.  In 
other words, with a stream function of the order of 20,000 
at the wall compared to zero at the center line there is not 
sufficient accuracy to distinguish precisely when the shock 
waves first combine.  In figures 12 through 16 the shock 
wave is gradually moving down the nozzle essentially as pre- 
dicted by the one-dimensional theory. 

The first fact to be observed about these solutions 
with shock waves is the fact that they are not normal but 
curve upstream toward the center of the passage,  In the 
course of obtaining solutions normal shock waves were in- 
serted in the passage in what was considered the proper loca- 
tion.  During the course of solution these shock waves had 
to be moved and made oblique by the processes described in 
appendix I in order to eliminate the residuals.  As a first 
approximation it might be observed that the shock waves must 
curve so that the rate of change of entropy normal to the 
streamlines gives rise to a sufficient magnitude of rotation 
term of the differential equation to replace the density 
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terms of the differential equation which decrease discontin- 
uously across the shock wave.  The photograph (fig. 17) 
taken in a high-speed wind tunnel at Harvard University il- 
lustrates such a shock. 

In figure 17 there is also shown another photograph at 
the "same" condition on a different day taken in 4 micro- 
seconds with a schlieren system.  The phenomenon of many 
shocks is a nonsteady one probably associated with the turbu- 
lence of the air stream.  Small "turbulence" pressure waves 
unable to pass through the throat accumulate there until 
they become a shock wave of sufficient magnitude to pass 
through.  It should not he inferred that the partial shocks 
of the solutions are of no importance "because they were not 
found in these nozsle experiments.  For an airfoil in free 
flight only partial shocks are possible.  After complete 
shocks are formed, agreement between wind-tunnel and free- 
flight conditions could not be expected* 

Everything in these solutions appears to follow essen- 
tially the conjectured progress of development and growth of 
the shock waves.  (See fig. 2.)  That this is not quite cor- 
rect can be seen by examining figures 8 and 10 more closely. 
It will be observed that the shock wave seems to arise (fig. 
10) not at the point where the  M •= 1  line touches the wall 
(fig. 8) hut somewhat upstream of this point, and, in fa-jt, 
makes a sudden appearance (not starting with aero length 
near the wall).  This can also he seen from the dotted line 
in figures 20 and 21.  The changes that take place as the 
flow conditions are changed are shown again in figures 18 
through 21, where the variation of Mach number and pressure 
along the center line and along the wall are shown.  The 
variation in Mach numher near the wall is shown in figure 10. 
It will be observed that the Mach number and pressure dis- 
tributions along the wall proceed smoothly up to a shock 
wave.  They then, of course, must change abruptly to the sub- 
sonic value appropriate to a shock wave at the correct angle 
(in this case normal) for the Mach numher existing ahead of 
the shock.  The pressure and Mach number do not vary smcothly 
from this value, however, hut are shown with a discontiriaous 
change on the subsonic side of the shock.  For the solutions 
presented in this report, the Mach numbers at all net points 
along the wall on the subsonic side of the shook wave fell 
on a smooth curve which when extrapolated gave the disconti- 
nuities shown.  For the row of net points adjacent to the 
wall no peculiar phenomena were required to get a solution. 
Later work, not reported here, has produced cases in which 
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the Mach, number rises very steeply from the value after the 
shock and then turns smoothly into the descending Mach num- 
ber curve.  Thus it appears that the curves of this report 
should show a steep rise rather than the discontinuities. 

Although the precise nature of the singularity at the 
wall in the subsonic flow following a shock has not "been de- 
termined, there is no difficulty in finding the qualitative 
explanation of this phenomenon.  Consider the supersonic 
flow of a compressible fluid along the convex side of a wall 
of given radius of curvature.  In order that the fluid fol- 
low the wall there must be adjacent to the wall a normal 
component of pressure gradient such that the pressure in- 
creases away from the wall.  This pressure gradient is re- 
quired to turn the velocity vector as the fluid moves along 
the curved wall.  If, now, a shock wave stands across this 
flow and reaches the curved wall, the stream ahead of the 
shock is left unaltered.  The stream immediately behind the 
wave is determined by the shock wave conditions.  The perti- 
nent condition for the present considerations is the fact 
that, except for modifications oaused by the entropy change, 
the lower the pressure (the higher the velocity) before a 
normal shock the higher the pressure immediately following 
the shock.  Since the pressure before the shock increases 
away from the wall, the pressure after the shock will de- 
crease away from the wall.  Hence the streamlines immediately 
behind the shock must be curved away from the wall. 

For the solutions presented in this report, the fluid 
was required to follow the wall.  The streamlines behind the 
shock must, therefore, reverse their curvature in such a way 
that the inflection point approaches the shock wave as one 
moves closer to the nozsle wall; while at the wall, the in- 
flection point coincides with the shock wave.  In a qualita- 
tive sense, therefore, the subsonic flow behind the shock 
wave is similar to the isentropic flow of a fluid along a 
wall with a discontinuity of radius of curvature.  The flow 
of an incompressible perfect, fluid along a wall with a dis- 
continuity of radius of curvature has been studied (reference 
10) and leads to an infinite rate of change of velocity along 
the wall.  Thus there is a singularity in the flow of an in- 
compressible fluid along a wall with a jump in curvature of 
the same type as that found in the Bubsonic flow following a 
shock wave. 

In the explanation of the wall singularity in the sub- 
sonic flow following a shock wave, it was noted that the 
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entropy jump through, a shock would cause some modification, 
of the explanation.  On figure 22 the ratio of the radius of 
curvature of a streamline "before and after a normal shock is 
shown as a function of the Mach number "before the shock, 
taking into account the changes of entropy as they actually 
occur.  Only at one Mach number is it possible for the stream 
to continue along a wall (with continuous curvature) without 
a singularity, and that is at a Mach number given by equation 
(22), which for air with Y = 1.U-0  is at  M = 1.66.' 

An infinite rate of rise of pressure along any stream- 
line adjacent to the wall is not possible because of the 
second' law of thermodynamics which prevents an expansion 
shock.  By writing the equation of continuity, momentum, and 
energy for a stream tube element enclosing a standing wave, 
there is found to be one and only one permissible subsonic 
state for each initial state, provided it is permissible to 
use an element the length of which in the direction of the 
streamlines is of higher order than its width.  To find out 
what can happen at the wall, it is necessary to use a stream 
tube element with the wall as one side and vith a width of 
the same (or higher) order as the length.  If such an element 
is used, the effects on its sides are of the same order as 
the effects on its ends, and, consequently, the conclusions 
about unique state after the wave do not follow. 

The rapid rise in Mach number along the wall after a 
shock wave varies in severity with both the wall curvature 
and the initial Mach number.  In figure 23 the ratio of the 
Mach numbers before and after this rapid rise is plotted 
against the Mach number before the shock.  There is also 
plotted the ratio of Mach numbers across a normal shock.  It 
appears that for the present nozzle the rapid rise of Mach 
number following a shock caused by the curvature singularity 
would just compensate for the Mach number drop through the 
shock itself at  M = 1.075«  Thus, it appears that if a shock 
solution had been sought at a lower Mach number than 1.075» 
there would have been a rapid rise in speed along the wall 
which would have left a supersonic stream moving faster than 
the original stream.  The present investigation needs exten- 
sion at this point if questions concerning the first appear- 
ance of a shock wave are to be answered. 

It thus appears that this report takes a step in the 
direction of clarifying the so-called critical conditions 
associated with the first appearance of shock waves but falls 
far short of an adequate explanation. 
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It appears that not only is the perfect fluid without 
shocks an insufficient mathematical theory to cover the prac- 
tical phenomena arising in connection with the flow of com- 
pressible fluids hut that even the extended theory which in- 
cludes compression shock discontinuities, as in this report, 
is not adequate to describe the facts properly.  It is prob- 
able that a sufficiently general mathematical theory (and 
presumably a fluid with friction would provide such) could 
give smooth transitions from one type of solution to another. 
There is, however, no reason to assume that such solutions 
would be either unique or stable. 

It may be argued that the sudden jump from one type of 
solution to another, as required by the present theory, does 
not contradict experimental observations.  True.  However, 
consider the case in which Taylor's limiting solution occurs 
for a passage in which the velocity at no point has yet risen 
to as high a value as  H = 1.07.  In this case no shock waves 
can arise at all if a discontinuous increase of velocity at 
the wall is considered objectionable.  The present theory 
(perfect fluid with shocks) is not adequate to cover all 
cases but must be extended. 

figures 19 and 31 should be compared with figure 1.  It 
is seen that the one-dimensional theory has been modified con- 
siderably and has been modified in different ways for the 
nozzle axis and for the nozzle vail. 

The flow through the nozzle is plotted against pressure 
at various points in figures 34, 35, and 36.  The reason for 
the differences in appearance of theBe figures can be under- 
stood by comparison with figures 4 through 16, 19, and 31. 
The importance of these differences follows if it is con- 
sidered that nozzle experiments are usually performed by reg- 
ulating the pressure in a large tank into which the gas dis- 
charges or by regulating the pressure at a small hole located 
somewhere in the nozzle wall.  It is quite obvious that there 
is no guarantee that a single-valued relation exists between 
the pressure at a given point and the flow through the nozzle. 
It is quite possible for a decrease in pressure to correspond 
to a decrease in flow rather than the usual increase in flow. 
In particular, a pressure hole drilled at certain points in a 
nozzle may read a given value for as many as three different 
flows.  It may well be that some of these are more stable 
than others, and therefore experimental difficulties and 
anomalies might well arise in nozzle experiments.  A few ad- 
ditional results of interest are shown in figures 3? and 38. 
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In figure 27 the distribution of rotation in the nozzle is 
shown for the solution of figure 13.  This rotation is far 
from negligible, particularly as the shock wave moves down- 
stream and becomes stronger.  This rotation is such that it 
will require the stream to separate from the wall sufficient- 
ly far downstream from the nozzle throat.  Jor the perfect 
fluid considered here, the rotation once produced cannot "be 
destroyed.  Thus far downstream from the nozzle throat where 
the velocity (without rotation) would approach zero, it can- 
not now do so since the rotation does not decrease.  The stream 
function is to "be considered as a surface plotted over the 
region of space through which the fluid flows.  This surface 
will have the same shape as a soap film stretched over a 
hole the shape of the domain and loaded with a pressure pro- 
portional to the fluid rotation at the corresponding point. 
If such a film were made for the present nozzle, the soap 
film would "be steepest at the throat and "become flatter and 
flatter on receding from the throat either upstream or down- 
stream.  Thus the fluid velocity would "be greatest at the 
throat and approach zero at infinity.  If there is rotation, 
however, the soap film would "be loaded.  Since the rotation 
cannot decrease, the loading does not decrease away from the 
throat and hence the soap film, instead of "becoming flatter 
and flatter, is bulged by the load.  If the slone of the 
soap film is again interpreted as fluid velocity, the fluid 
will be moving away from the throat on one side of the bulge 
and toward the throat on the other.  Where the bulge first 
starts, there would be the separation point in the nozzle. 
The consequences of this separation were not investigated. 
While this analogy is strictly correct for incompressible 
fluids only, it shows clearly the problem involved. 

In figure 28 the variation in entropy behind the shock 
waves is shown for all of the solutions with shocks»  Since 
entropy is a function of the stream function only for a par- 
ticular solution, such a composite figure is possible (such 
a figure is not possible for the rotation which is a func- 
tion of pressure as well as entropy gradient).  By a refer- 
ence to the computation curves of the earlier report (refer- 
ence 7)1 1* is obvious that this change in entropy causes a 
very considerable alteration of the properties of the fluid. 
It is for this reason that the pairs of figures, IS, 19» **n.d 
20, 21, show considerable differences.  (for constant entropy, 
p = f(M), p.nd these figures would differ only by an ordinate 
scale change.) 

In figure 29 the shock waves for «11 the solutions are 
assembled for comparison.  It is clear how the shock waves 
arise near the wall, grow and move downstream. 
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EFFECTS OF FRICTIOH 

Figure 30 shows a series of photographs of the flow 
through a hyperbolic nozzle taken in a high-speed wind tun- 
nel at Harvard University.  It is not surprising that this 
flow in no case looks like the predicted flow.  The rela- 
tively small radius of curvature at the throat of the noz- 
zle investigated makes it impossible for a real gas with 
friction to follow the walls.  Since for low velocity a Jet 
separating from both walls is not very stähle, the stream 
usually separated from one wall and passed along the other 
(flow nonsymmetrical ahout axis of nozzle).  As soon as 
shock waves of reasonable magnitude appeared, the stream 
separated from "both sides and passed out as a free Jet. 
Thus, there will have to he included in any complete inves- 
tigation the effects of friction on the modification of the 
effective "boundary shape hy the "boundary layer, which modi- 
fication will eventually have to include flow separation 
which at the present cannot he satisfactorily predicted; and 
also the boundary layer will introduce very considerable 
changes in the partial shock waves which appear and conse- 
quently will greatly affect the pressure and velocity dis- 
tributions along the wall near the throat of the nozzle. 
Such friction effects will, it is reasonably certain, always 
lead to flow separation at least locally between the end of 
a shock wave and the wall.  Two other effects which might be 
worthy of note, although not coming directly under the head- 
ing of friction, are (l) moisture in the air and (2) heat 
transfer.  It is quite probable that the first shock wave 
encountered by the stream in the photographs of figure 30 is 
closely connected with the moisture in the atmosphere as 
changes in form of this, "throat shock" occur with changes of 
atmospheric moisture. 

The consideration that the nozzle is not thermally con- 
nected to any source or sink of heat (generally not true) is 
not a guarantee that no heat transfer to the air stream 
takes place.  Since the temperature in the boundary layer of 
a gas with Prandtl number other than Pr = 1  would not be 
constant, the nozzle to be in equilibrium with the gas would 
have a varying wall temperature along the nozzle length. 
For a metal nozzle this would necessitate a considerable 
flow of heat from one portion of the nozzle to another and 
hence from one portion of the gas stream to another.  It is 
not likely that this effect is ever very large but it should 
not be forgotten completely since, in some cases, it might 
be significant« 
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CONCLUSIONS 

The two-dimensional flow of a frictionless, adiabatic, 
perfect gas through a hyperbolic nozzle follows very   closely 
that to he expected from the investigations of Taylor (ref- 
erence 3) as long as no shock waves appear.  A symmetrical 
supersonic region appears near the wall at the throat for a 
sufficiently high flow through the nozzle.  There is a great- 
est flow above which this type of flow no longer exists. 

In spite of attempts to determine exactly what it was 
that caused the symmetrical solutions to cease existing it 
could only be noted that as the maximum velocity got higher, 
the residuals (local fluid rotation) became more and more 
difficult to dispose of.  When it became absolutely impossi- 
Tila     +-. n    iHonftoo     n-P     4-_ Vi a     fftfoHnr      (a     of sfs     n-P    a •? f ol fa     +.Vlnfr.     •? « 

The solutions presented in this report constitute a 
story of the growth of the flow pattern inside of a nozzle 
from zero velocity to the highest attainable velocity.  This 
flow picture is a good first approximation to what really 
happens in a two-dimensional nozzle as long as the real flow 
through the nozzle is free from flow separation,  further 
acouracy of prediction of what happens in a nozzle can be 
attained only by using a more complicated fluid continuum 
which at least has the additional property of friction. 

Critical (greatest) flow through a nozzle is not reached 
until the shock wave first extends ail the way across the 
nozzle passage.  During the growth of the partial shocks, 
however, the flow changes only 1 percent.  Th« greatest flow 
is 0.7 percent less than the theoretical maximum that would 
be obtained if the  M » 1  line extended across the nozzle 
at the throat. 

Harvard University, 
Cambridge, Mass., February 10, 1945, 
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APPENDIX I 

SOLUTIONS WITH COMPRESSION SHOCKS 

In a previous report (reference 7) a "brief description 
was given of the method of fitting compression shocks into 
the numerical solution.  This method has "been further per- 
fected and is presented here. 

In the transformed  (i,*l) plane, the streamlines,  >{/ = 
constant, almost ooincide with the  fl  constant lines when 
the shock waves are nearly normal.  This circumstance greatly 
simplifies the resulting formulas, so that the derivation 
will "be carried out with these assumptions.  Figure 31 shows 
a streamline crossing a shock wave from the supersonic, b, 
region to the subsonic, a, region.  The obliquity, 0W, of a 
shock is given "by computation curve 5 of reference 7 in terms 
of the Mach number of the approaching stream and the deflec- 
tion angle  cp.  This deflection angle can De computed from 
the residuals at points 1 and 2 as follows.  The streamline 
makes an angle  a with the  I  axis given "by 

tan a 

Thus 

(**\    » - *L (4) 
*   vn 

***  *k - *jn " *£, 
^b    na       n 

(5) 

where the last form is obtained by neglecting the very small 
difference between  v|/_   and  i|/_ . 

b        ^a 

Now, observe that if the shock wave had not been present 
there would have been a "supersonic" value of  v^.  at point 

2 which would have made the residual at point 1 equal to 
zero.  If, however, the value of  ty3   from the subsonic so- 

Et 

lution is used in computing the residual  ^lt  it will have 
the value 

Qi = M/a - *a  * %   - ^ - i>L    6 (6) 
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or 

Similarly 
ty  - ty  + Q, 

Mr, " - — J  (8) 
^a        8 

Substitute these into equation (5) 

„ = - 3i*Si = .2 ^JL^ (9) 

Another relation to "be satisfied by the shock wave is 
obtained "by observing that the value of  ty does not change 
across the shock.  Thus 

^x + €5^6   - *a - (1 - O 8*| <10> 

from which 

*3 - *» - 8 ^L 
€ » 

8(*.  - ^f ) 
6b     a 

(11) 

Again using the relations (?) and (8) 

The shock wave divides the distance between net points 
inversely as the residuals. 

Finally, a shock wave as treated in this report, is as- 
sumed to be continuous, not branched, and ending either at 
the wall or where  M = 1. 

The technique of solution, then, is to attempt to elim- 
inate all residuals.  Failing this, an attempt is made to ac- 
cumulate all residuals along some line among the points.  In 
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the present work it was always fairly obvious where the shock 
would be by observing the trend of solutions.  Furthermore, 
by observing the sign of the rotation term that is needed 
after the shock to balance the decrease of the density term, 
it was fairly obvious which way to bend the shock.  Hence, 
early in the course of solution, it was possible to sketch in 
a likely shock wave and with equations (9) and (12) to com- 
pute the required residuals at points on both sides. 

The formulas of this appendix were derived after making 
assumptions about the streamlines and shock waves (tan aa c: aa, 
tan a>b s; aD).  As a solution nears completion, these assump- 
tions can be checked.  If they are not met with sufficient 
accuracy, more elaborate formulas must be derived using es- 
sentially the same methods as the above-mentioned. 

APPENDIX II 

THE STREAMLINE CUR7ATURE JUMP ACROSS NORMAL SHOOK WAVES 

Let a streamline pass through a shock wave as in figure 
32, and suffer a jump in radius of curvature from  Rö  to 
Ra.  Assume the stream approaching the shock wave is a per- 
fect gas with uniform stagnation state.  The approach flow 
will then be irrotational. 

The momentum condition applied normal to the streamline« 
gives 

or   r 
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for each side of the shock wave,  Hence, "by division, 

;) 
h.=   *±(bJA) (14) 
Ra   *a VöP* J , 

where the subscript  s  denotes that the derivative is to he 
evaluated along the shock wave. 

The change in pressure across the shock is given "by the 
momentum equation as 

Pa " Ph + Pb^b* ~ Pa^a2 = Pb + Pb<1b2 ~ 4a*b>   (l5) 

in view of the continuity condition P.a.    -  P a . 
DO    a "a 

Before eliminating  pa  between equations (14) and (15), 
it is well to note Prandtl's relation 

q q. = q  a -  ^  av
a + Y = 1 q„3        (16) ^aHb   Hor    Y - 1  •*    Y + 1  b 

where  q„„s  is a constant because of the assumed constant ^•cr 
stagnation state of the approach stream. 

Now by equation (14) 

S.aLA »*><«»•-«..->, (17) 
Ea   «or" V 8pl> 

where the subscript  s  is dropped, as the derivative now de- 
pends only upon the approach Mach number.  In fact  R-b/aa 
depends only upon the approach Mach number. 

Carry out the differentiation indicated in equation (19) 

and note that  aa -  r-5- and  M » ^-. There results 
op a 
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bL .   *iL ll **'-.*>*' +  ^  %£ > (18) K.       «„,.* T a»» riJ  >P a _» 

The   remaining  derivative   term   is   found   to   have   the  value   ~2 
"by using  the momentum   equation  along  the   streamlines 

Thus 

q  d   q  +   4E. =   0 (19) 
P 

5L = _5JL_ (M
3 ^ D _ M

3 (20) 
Ea       <*cr3 

By   eliminating     qcr
s      from  equations   (16)   and   (20),   there   is 

obtained   finally 

 £ rM
3>L±-il (2D 

1   +   V   r   I   Ma   L 2       J 

The ratio of curvature radii varies from -1 at  M = 1, 

through 0 at  M » /Y + g  ( = 1.482 for  Y = 1.40), through 

+ 1 at  M = 1.66  for  Y = 1,40, and  > « as  M—>».  The 
curve is shown as computation curve (fig. 22).  The Mach 
number at which no change in curvature occurs across a shock 
wave is given hy 
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APPENDIX III 

ADDITIONAL REMARKS ON THE NUMERICAL SOLUTION 

OF SUPERSONIC REGIONS 

There was no definite procedure specified in the previ- 
ous report (reference 7) by which solutions in supersonic 
regions could "be obtained.  It is still impossible to write 
any rigid instructions that are sure to work.  This is a 
general difficulty as Pox and Southwell (reference 9) state 
that their iteration method diverged after reaching a minimum 
value. 

The residuals in the solutions could he reduced consid- 
erahly by the following procedure: 

1. Obtain a rough solution using  q*  constant as ex- 
plained in reference 7. 

2. Move residuals around somewhat in an attempt to im- 
prove the solution.  During this process, draw  q*  versus 
l\     curves to see that they are smooth.  This is especially 
important for the evaluation of the properties at the nozzle 
wall. 

3. Use a finer net making a first estimate of net val- 
ues by using a  q* variation as already found for the coarse 
net. 

Some trouble may be experienced in interpolating to a 
finer net in regions were  Mel,  The variation of  qj.  from 
point to point may be such that, on interpolating, the  ty 
gradient exceeds the maximum possible value; or if the gradi- 
ent is held down to its maximum permissible value, then the 
resulting streamline with the fine net may differ considera- 
bly from the corresponding streamline on the coarse net. 
This difficulty could be avoided by using at each net point 
not the q^     for that point, but an average  q^  for that 

point and two points on each side of it on the next finer 
net.  Using an average from a still finer net was found to 
offer no additional advantage.  The five q.^     values (one at 
desired point and two on each side on finer net) were weighted 
1, 2, 2, 2, 1 which gives approximately the area in the 
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region ±S  on each side of the desired point.  A few other 
averages were tried without noticeable "benefit.  In partic- 
ular, since the mass flow is almost constant near  M = 1, 
it can be shown that a harmonic mean should be taken but the 
resulting "effective"  q.i  was not appreciably different 
from the average as above-mentioned. 
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(a) Sbucfc wave at nozzle throat.   Exposure Ho second. 

On attempting to repeat the above.experiment the following photograph was obtained. 

(b) Non-steady shock naves at nozzle throat.   Exposure 4 microseconds.   Turbuknce Is probably responsible for this non-steady phenomena. 

Figure 17.—Schlieren photographs of air flow through a nozzle. 
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